Astronaut's Perspective

Risk Management

- Risk Evaluation Question:
 - "Do the Benefits outweigh the Risks?"

- Benefit
 - Gain
- Risk
 - Probability of Loss

Risk Evaluation Question:

- "Do the Benefits outweigh the Risks?"

– Gains:

 Success, Advancement, Money, Fame, Prestige, Power, Exhilaration, Adventure, Excitement, (Competition)

-Losses:

 Failure, Schedule Delay, Money, Embarrassment, Demotion, Hardware Damage, Injury, Death

- Types of Risk in Programs
 - -1. Business Risk
 - Cost or Schedule Challenges
 - (Usually not personal injury)
 - 2. <u>Technical Risk</u>
 - Probabilities of Mission Success
 - Task and Procedure Complexity
 - (Can involve injury or loss of life)

- 1. <u>Business Risk</u> (Cost / Sched)
 - Standard Business Practices
 - Past Performance
 - Metrics, Earned Value, Schedules, Progress Reports
 - Present Performance
 - Procedures, Cost Performance Index, Efficiencies,
 Optimization, Toyota Production System
 - Future Predictions
 - Estimated cost At Completion, Red/Green Stoplights, Management Reserves

ISS Risk Matrix

RISK DEFINITIONS

RISK: An ISS Program Risk is any circumstance or situation that poses a threat to: crew or vehicle safety, Program controlled cost, Program controlled schedule; or major mission objectives, and for which an acceptable resolution is deemed unlikely without a focused management effort. Agreements between the International Partners (IPs) that are not being fully implemented must be documented as ISS risks. (ISS Risk Management Plan)

WATCH ITEM: A potentially significant threat to the ISS Program. A William be effectively managed internally by the managing organization with existing team resources and processes (little coordination laterally or vertically is required for effective mitigation).

RISK MANAGEMENT: An organized, systematic decision-making process that efficiently identifies risks, assesses or analyzes risks, and effectively reduces or eliminates risks to achieving program goals. (ISS Risk Management Plan)

ISS RISK MANAGEMENT APPLICATION (IRMA): The ISS database used to track ISS risks and provide ISS risk status reports to the ISS Program management. URL: http://mod.jsc.nasa.gov/irma

What is the likelihood the situation or circumstance will happen? Probability Level ... or - the current process ... cannot prevent this event, no alternative approaches or processes 5 Very High 4 High cannot prevent this event, but a different approach or process might. 3 Moderate may prevent this event, but additional actions will be required. o 2 is usually sufficient to prevent this type of event is sufficient to prevent this event.

RISK CONSEQUENCE SCORING TERMS

- 1 Cost is defined as the dollar amount required to mitigate the risk, not the cost of the risk if it occurs.
- Schedule definitions: Level 2 Schedule relates to ISS hardware delivery dates and Level 1 Schedule relates to ISS launch dates.
- Technical definition includes everything that is not cost and schedule: e.g., safety, operations, programmatic.
- 4 Cost, Schedule, and Technical Consequences can exist concurrently and are not mutually exclusive.
- 5 Risk scoring is accomplished by "multiplying" Likelihood X Consequence. When determining risk consequence among Cost, Schedule, and Technical, the highest score is represented in the ISS Risk Matrix as a single score value.

	What is the Consequence (Cost, Schedule, or Technical) of this ISS Risk?								
c	Level	1	2	3	4	15			
COMMOD	Cost	Minimal Impact of < \$100K	Budget Increase between \$100K and \$1 Mil	Budget Increase between \$1 Mil and \$10 Mil	Budget Increase between \$10 Mil and \$50 Mil	Budget Increase of > \$50 Mil			
EZ		Minimal or No Impact	Additional Activities Required. Able to Meet Need Dates	Level 1 Schedule or Level 2 Schedule Milestone Slip of = 1 Month	Level 1 Schedule or Level 2 Schedule Milestone Silp of = 1 Month, or Program Critical Path Impacted	Cannot achieve Major ISS Program Milestone			
읕	Technical	Minimal or No Impact	Moderate Reduction, Same Approach Retained	Moderate Reduction, But Workarounds Available	Major Reduction, But Workarounds Available	Unacceptable, No Alternatives Exist			

- Policies
 - Standards, Requirements
- Safety
 - Hazard Analysis, Controls, PRA
- Reliability
 - FMEA, CIL
- Quality
 - Design, Test, Inspect, Surveil, Audit

- Boards, Processes
 - Design Reviews [PDR, CDR]
 - Problem Resolution Teams (PRT)
 - Control Boards [MICB, SICB, PRCB]
 - Operational Reviews [PAR, FRR, L-2, MMT]

- Maintenance
 - Operations and Maintenance Requirements and Specifications Document (OMRSD)
 - Operations and Maintenance Instruction (OMI)
 - Change Request (CR)
 - Requir. Change Notice (RCN)

- Operations
 - Launch Commit Criteria
 - Flight Rules
 - Crew Procedures
 - Problem Tracking
 - PRACA, CAR, PR, MR, IFA

- Technical Risk Mitigation
 - Organizational Control (Corporate)
 - Policies
 - Training, Tools, Resources
 - Personal Control (Individual / Team)
 - Procedures
 - Situational Awareness, Judgment, Values, Ethics

Deficiencies

- Executives and Managers
 - Push decisions down, encourage <u>risk</u> acceptance at lower levels
 - Tough decisions not made at top, deniability
 - Shift responsibility and accountability
 - Don't want Bad News

Deficiencies

Supervisors and Workforce

- Eager to please bosses
 - Ironically, fall into culturally acceptable trap
 - Compliance and
 - Willing Acceptance of Responsibility and Accountability
 - "Sunshine Reports"
 - Optimistic Status Reports
 - Optimistic Problem Resolution plans

Deficiencies

- Technical Risk Personal Control
 - Discussions regarding future death rarely occur
 - 1. Socially Unwelcome (Team)
 - Unproductive
 - Unwritten Rule, Superstition, Community Taboo
 - 2. Thoughts <u>Not Entertained</u> (Individual)
 - Faithful Trust
 - Comfortable Ignorance
 - Sense of Invulnerability

Comparative Risk

	U.S. Air Carriers	Military Combat Jet	Space Shuttle
Cost per Vehicle	\$42 M (G-V) \$75 M (737)	\$49 M (F18)	\$2,000 M
Pilot Flight Time			
Risk of Loss			

Comparative Risk

	U.S. Air Carriers	Military Combat Jet	Space Shuttle
Cost per Vehicle	\$42 M (G-V) \$75 M (737)	\$49 M (F18)	\$2,000 M
Pilot Flight Time	65 – 80 Hrs./Mo.	28 Hrs./Mo.	15 Hrs./Mo.
Risk of Loss			

Comparative Risk

	U.S. Air	Military	Space
	Carriers	Combat Jet	Shuttle
Cost per Vehicle	\$42 M (G-V) \$75 M (737)	\$49 M (F18)	\$2,000 M
Pilot Flight Time	65 – 80 Hrs./Mo.	28 Hrs./Mo.	15 Hrs./Mo.
Risk of	1 / 3,700,00	1 / 20,000	1 / 57
Loss	('94-'03)	(Since WWII)	

 Comparison between Operators and Managers:

Operators

High Confidence
Healthy Self-Doubt

Managers

High Confidence
Healthy Self-Doubt

 Comparison between Operators and Managers:

Operators

High Confidence
Healthy Self-Doubt

(Hand-Eye Coordin.?)

Managers

High Confidence
Healthy Self-Doubt

(Elevated Intelligence?)

 Comparison between Operators and Managers:

Operators

High Confidence
Healthy Self-Doubt

(Hand-Eye Coordin.?)
Mental Discipline

Managers

High Confidence
Healthy Self-Doubt

(Elevated Intelligence?)
High Values

 Comparison between Operators and Managers:

Operators

High Confidence
Healthy Self-Doubt

(Hand-Eye Coordin.?)
Mental Discipline
Operate under stress
[threat of death]

Managers

High Confidence
Healthy Self-Doubt

(Elevated Intelligence?)
High Values
Make effective decisions
[threat of anguish]

Examples

- "Risky Program" Excuse
 - "We can make the Shuttle as safe as possible, and then we'll never fly."
 - Sends two messages:
 - 1. Generic: We're willing to accept additional risk
 - 2. Specific: We don't want to address your issue
- Accusations of "Risk Aversion"
 - Provokes Dangerous Decisions

Examples

- "Risk Aversion" Response:
 - How much risk we are willing to accept?
 - Challenge ourselves to accept more risk
- More relevant Question:
 - How do we distinguish between unnecessary risk and necessary risk?
 - How do we eliminate the former and mitigate the latter?

Mitigating Risk

- High Reliability Organizations
 - Address Every Issue
 - Listen, evaluate
 - Make Decision Objectively
 - Accept necessary risk,
 - Don't accept unnecessary risk
 - Provide rationale, re-evaluate
 - » Might convince the more conservative people that additional risk is acceptable
 - » Encourage continued conservatism
 - Elevate, commensurate with magnitude of issue, especially if there is disagreement

Summary

- Ineffective Risk Decisions
 - Risk/Benefit Bias
 - Misunderstood or Ignored Risks
 - Fail to Postulate Accident
 - Loss of Life
 - Loss of Assets
 - Psychological Consequences

Summary

Effective Risk Deliberations

- Consider the Risk
 - Understand Probabilities
 - Deliberate Candidly, Objectively
- Manage the Risk
 - Eliminate the Unnecessary Risk
 - Mitigate the Necessary Risk

Summary

<u>Effective</u> Risk Deliberations (cont'd)

- Acknowledge the Consequences
 - Be Willing to Forgo the Benefits
 - Be Willing to Accept the Losses
- Integrate Accumulated Risk
 - Collective Wisdom is Needed
 - Communication is Crucial